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COLLECTIVE ENERGY DISSIPATION
AND FLUCTUATIONS
IN ELASTOPLASTIC SYSTEMS

T.I.Mikhailova', I.N.Mikhailov?, M.Di Toro>

Starting from the equations of motion of a simple system possessing the properties of
elastic and plastic bodies, we reconstruct its Lagrangian and Hamiltonian functions and also
the so-called Rayleigh dissipation function. This allows us to find the rate of the system
«heating» and to analyse the fluctuations of the basic observables. In this way a rather general
scheme of solving analogous problems in more complex elastoplastic systems is established.

The paper gives a basis for studying open problems in the nuclear fusion and heavy-ions
quasi-elastic collisions processes. It may be applied also for the theoretical treatment of
dynamical problems in the other mesoscopic systems of fermions.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics
and Laboratory of Nuclear Problems, JINR in collaboration with INFN (Catania, Italy).
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ITaCTHYECKHX CHCTEMAX.

B paGore npexcrasieH MeTol M3ydeHHs npoOneM, BO3HHKAIOMIHX B IIPOLECCAX CIAMAHHMS
Sep U KBA3UYMPYIHX CTOJIKHOBEHHH TAXEIbIX HOHOB. OH MOXET OBITh TaKX€ HCIIOIb30BAH LIS
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1. Introduction

Elastoplastic materials are well known in nature. Their name signifies that these
materials combine properties of elastic and plastic bodies. As the first, they respond with
an elastic force restoring and initial configuration when they are brusquely disturbed, but
as plastic materials they easily change their shape under an external pressure.

The mathematical studies of elastoplastic materials date to the time of Maxwell. Most
of such studies concern macroscopic bodies for which the plasticity is a well understood
property. However, for about a decade one discusses in the literature the elastoplastic
properties of atomic nuclei [1], [2]. The microscopic (quantum) nature of nuclei demands
some additional formal study of such systems. A study of this kind is presented in this
paper on the basis of very simple equations of motion describing an elastoplastic dynamics.

The mode! considered below is similar but much simpler than the models describing
nuclear elasto-plasticity. However, it allows some qualitative comparison with more
realistic nuclear models and may be eventually generalized to study the nuclear processes
in a quantitative way. One may think also that algorithms formulated in a way which is free
from complications of a specific model may be used outside the realm of the nuclear
physics, probably in the molecular physics and in the physics of atomic clusters.

The paper is organized as follows:

— In Section 2 we give a general description of elastoplastic systems and present the
equations of motion of a simple elastoplastic system which will be subjected for
cxamination. The model is compared with the one describing collective dynamics in the
nuclear fusion process.

— In Section 3 we give a Rayleigh-Lagrange form for the equations of motion.

— In Section 4 we define the collective Hamiltonian and study the rate of the collective
energy dissipation.

— Section § is devoted to the study of the fluctuations of the collective energy in the
system analysed before. The Langevin-type equations are formulated for collective
variables. We find that the fluctuations of some of collective variables are suppressed at the
beginning of regaining the equilibrium state.

— We finish the paper with a short conclusion.

2. Elasto-Plastic Systems and Nuclei

Consider a system described by the equations
1+ «
2 Q + 2 Q - nv (1)
1.Boo L
n+ 5 Q= . I. 2)

The right-hand side of Eq.(1) plays a role of a part of the force affecting the physical
quantity Q(t). The second of these equations may be transformed to an integral form giving
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and showing that this part of the force is determined by the evolution of the system during
the preceding period of time of the order of 7. One may say that the system «decides» what
to do in the next moment recollecting information on what had happened to it before. For
this reason this system could be called also as a system with a «memory». Thus, the
parameter 7T determines the memory scale. In the processes going slowly in this scale (in
adiabatic processes) the system described by Egs.(1), (2) follows in its evolution an
equation of motion of a vibrator with the frequency Vo (o> 0) damped by the friction force
xO(f) where x=1B/2:

l . . o
5 0+x2+50=0. )
When xz > o, vibrations are overdamped, and the body is plastic.

The fast (diabatic) processes in the same system proceed as if the system were an
elastic body (see Ref.2):

Q+(a+P)Q2=0. .
In this regime the vibrational frequency is renormalized and is equal to Q=vo+B.
Choosing an appropriate time scale one may always transform the parameters in Eq.(1)
and Eq.(2) in such a way that |a| =1. The elastoplastic properties are then well
pronounced when f >> 1. The «memory» scale parameter 1 determines the division of the
perturbations into the slow and the fast ones: subjected to fast perturbations the system
reacts as an elastic body, in the other case — as a plastic one.

The evolution of the system described by Eqgs.(1),(2) is demonstrated in Fig.1 and
Fig.2. Here the time dependence of Q and Il variables is shown for a «large» value of B
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Fig.1. Above: time dependence of Q variable; Fig.2. Same as in Fig.1 for a=1, B=425 and
below: time dependence of Il variable for for y=25
o=1,p3=425and y=05
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and for two different values of y=1:-]. Elastic properties are more pronounced for small
values of v, but are distinctly seen even when it becomes comparable with the «diabatic»
vibrational frequency Vp.

Regarding the nonzero starting values of Q and Q(f) variables as a result of
instantaneous external perturbation, one may say that an external force applied to such a
system produces at the beginning phenomena typical for elastic bodies. The final part of the
evolution process corresponds to an exponential decrease of the absolute value of the
variable Q (when a > 0). Hence, the way of coming to the equilibrium state of this system
reveals its plastic properties.

Experiments using heavy ions with energies close to the Coulomb barrier performed
during the last decade reveal rather unexpected nuclear properties. Depending on the
experimental conditions, colliding heavy nuclei behave either as elastic bodies or as bodies
made of a very-plastic material. The studies of nuclear elastoplasticity have already a certain
history [1], [2]. Equations (1) and (2) of the previous section have essentially the same
structure as those-obtained in Ref.2 for the description of the nuclear fusion. In application
to the process, the elements in these equations have the following meaning:

a) The quantity Q(r) is the Q(')z,o component of the nuclear quadrupole mass tensor;

b) The quantity I1(r) is the (A, i = 2,0) component of the intrinsic kinetic energy tensor;

c) The quantity aQ(r) in Eq.(1) substitutes the term in the corresponding equation
considered in Ref.2 originating from the deformation dependence of the nuclear self-
consistent potential V(r,#). The origin of the quantity (B/2)Q(t) in Eq.(2) lies in the
coupling between the time dependent deformations of the geometrical and Fermi surfaces;

d) The parameter t is nothing but the mean relaxation time appearing in the
approximate expression for the «collision» or «relaxation» term in the microscopic theories
based upon the kinetic equation.

For small Q values the model of Ref.2 gives a good description of nuclear giant
quadrupole resonance [3]. The width of GQR in the daughter nucleus for the system of two

fusing 8Ni nuclei is well reproduced when y=h/1=2.5. The same equations [2] yield
B =42.5 for the same fusing system.

The nuclear elastoplasticity reveals itself in a number of ways. It determines the
conditions for the fusion and explains the «extra push» phenomenon [4], [5]. It explains the
anisotropy of y-radiation from the low-spin fraction of fused nuclei.

The model of fusion formulated in Ref.2 allows a relatively simple numerical analysis
and leads to a number of nontrivial predictions concerning the nuclear fusion. Having
evident merits this model is, however, limited in its application for various reasons. One
particular drawback of the model: it treats the collective processes taking place in nuclear
reactions in a purely classical way. The equations of the model define a classical
«trajectory» of the system which, at best, may be associated with some mean characteristics
of the process. In quantal systems as nuclei, the fluctuations around the mean values play
an important role.

The study of fluctuations in an elasto-plastic system is one of the subjects of this paper.
There is another problem which we want to solve in this paper: the determination of the
collective energy associated with the motion in the elasto-plastic system of the type
described in Ref.2,
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3. «Rayleigh-Lagrange» Form of Equations of Motion

To know the partition between the collective energy and the energy of intrinsic
(statistical) excitation one must render the equations of motion a form as close as possible
to a canonical Hamiltonian form. It turns out that it is easier to arrive first at the Lagrangian
form of such equations and then to use the well-known algorithms to pass to the
Hamiltonian form.

To render a canonical form to Egs.(1),(2), let us consider the II{f) variable in these
equations as a generalized velocity, introducing a generalized co-ordinate Z(f) such that:

() = Z(1). )
Then Eqgs.(1),(2) become
Q+aQ-2Z=0,
4' . o £
-BZ+2Q— 41B' (6)

If the right-hand side of the second of Eqs.(6) were equal to zero, these two ‘equations
would satisfy the conditions at which their standard Lagrangian formulation is possible [6].
The expression in the right-hand side could be also incorporated in the Lagrangian
formulation. One may do it in the same way as one treats the friction force [6] by
introducing two functions: the Lagrangian function

L =% (Q* - aQh + M, (% 72 +ZQ] )
and the dissipation function
200 5 (8)
3B
where M, is an arbitrary constant to be fixed later on.

Q

4. Collective Energy

Now, we introduce the generalized momenta P, = dL/dQ, and the Hamiltonian function

H (P, Q)= z P iQi -L

The standard technique of transforming the Lagrange equations to the Hamiltonian form
applied to the system, in which the dissipations function operates, leads to the following
equations

. ) 3
Q= oP,

From these equations it follows:

32
Hop Pi=- a—(-zl_ﬂ“a—QiHcou :
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Fig.3.  Partition of the total energy into
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5. Fluctuations in Classical Elastoplastic Systems

Equations (1), (2) chosen here to describe an elastoplastic system give a very limited
information of such a complex many-body physical object: the time evolution of some
collective degrees of freedom of it. The dissipation of the collective energy signifies an
interaction of these degrees of freedom with the numerous others. The description given by
these equations may be called «macroscopic» as, for example, one calls the description in
terms of the friction force of a massive (Brownian) particle propagation through the liquid
[7]. When the size of the Brownian particle decreases, the quality of such a description
diminishes. To learn more about the motion of a «small» system, one must pass from the
«macroscopic» to «microscopic» description. In this section we make a step towards it for

our «elastoplastic system» following the standard techniques established for the study of the
Brownian motion.

Let us introduce a «microscopic» Hamiltonian

H o= Hogy = 2Fg + Hy, (15)

1 is the collective Hamiltonian of Eq.(11) and Hg is an «intrinsic» Hamiltonian

operating in the space of intrinsic co-ordinates and momenta (§). With the chosen form of
the coupling term (- ZFg), the Hamiltonian H_. leads to the same equations of motion as

in Eqs.(12) and in the first of Egs.(13). The second of the latter equations takes the form:

where H
co

PZ=F§. (16)
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where the quantity o =G§T measures the amplitude of perturbations introduced by the

random force 8F(¢). Then
2

B ) ¢4
600 =| 3~ | | arGa-rrTe. (23)
2o

The value of parameter ¢ in Eq.(22) may be determined from the thermal equilibrium
conditions between the collective and intrinsic motions, just as in the case of the Brownian
motion. We remind that the last term in the expression (14) for the collective energy
represents intrinsic degrees of freedom. The fluctuating force dF(f) contributes, in particular
a term

0 Mo, =

8E2,(0=—2 (80" + 080 ) 24)
to the part of the collective energy which represents the «Q» degree of freedom in the
collective Hamiltonian in Eq.(11).

In the case of the thermal equilibrium with a medium (i.e., with the ensemble of
intrinsic degrees of freedom) at the temperature T (which is here supposed to be sufficiently

high) the system must accumulate on the average an energy OF cQou(T) =kT, where k is the

Boltzmann constant. Equating 8F cQou(t — o) = (G)2A with the latter expression one finds:

_kT
"2‘A' (25)

Suggesting a Gauss distribution of the fluctuating quantities one may find the prob-
ability of deviations of these observables from their positions on the macroscopic trajectory
[7]. In systems with strongly accentuated elastoplasticity, where B >>a and VB >>1/21,

the quantity 8Q2 regarded as a function of

time lags behind 8Q2 in its saturation i.¢ 4 B ]
properties during the time O<t<1B/a ] T
(Fig4). As a result during this time ~
interval the averaged fluctuation energy in %8
Eq.(24) remains lower than k7. One may .
say that the temperature determining the g |
statistical ~ properties  of  quantities
depending on Q and Q and defined as | IRttt
0.4 s . PRtk
Fig.4. Time dependence of averaged fluctuating gg‘ﬂ
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